

Published on Web 07/01/2009

Square Tetrapalladium Sheet Sandwich Complexes: Cyclononatetraenyl as a Versatile Face-Capping Ligand

Tetsuro Murahashi,* Ryou Inoue, Kentaro Usui, and Sensuke Ogoshi

Department of Applied Chemistry, Graduate School of Engineering, Osaka University, and PRESTO, Japan Science and Technology Agency (JST), Suita, Osaka 565-0871, Japan

Received May 6, 2009; E-mail: tetsu@chem.eng.osaka-u.ac.jp

Among the monocyclic conjugated olefins formulated as $[C_nH_n]^x$, cyclopentadienyl anion $(C_5H_5^{-})$ is widely used as the auxiliary ligand for a mononuclear metal center, in part because of its stable and strong electron-donating properties associated with the η^5 coordination.^{1,2} Cyclononatetraenyl anion $(C_9H_9^{-})$ is the next larger Hückel-aromatic $[C_nH_n]^-$ monoanion (Scheme 1) but has rarely been used as the ligand in transition-metal complexes.³ A drawback is that the cyclononatetraenyl ligand bound to a mononuclear metal center is susceptible to skeletal rearrangement.^{4,5} Because of its large ring size and possible strong electron-donating ability, however, cyclononatetraenyl is attractive as a planar π -coordinating ligand in metal sheet sandwich complexes, a recently discovered class of sandwich compounds.^{6–9} Herein we report that cyclononatetraenyl acts as a stable π -coordinating ligand for an unprecedented square metal sheet sandwich complex.

Scheme 1. Cyclopentadienyl and Cyclononatetraenyl Anions

Lithium cyclononatetraenyl was prepared via ring-expansion of $C_8H_8^{2-}$ according to a literature procedure.¹⁰ Initially, we examined the ligand-substitution reaction of the bisperylene Pd₄ chain complex¹¹ [Pd₄($\mu_4-\eta^2:\eta^2:\eta^2:\eta^2:perylene)_2(CH_3CN)_2$][BAr^f₄]₂ (BAr^f₄ = B{3,5-(CF₃)₂(C₆H₃)}₄) with 2 equiv of Li(C₉H₉). Although the starting materials were consumed immediately, the resultant black precipitates were insoluble in common organic solvents, and the product has not yet been identified. Next, we chose the Pd₄ rhombic sheet complex [Pd₄($\mu_4-\eta^3:\eta^2:\eta^2:\eta^2:perylene$)($\mu_4-\eta^2:\eta^2:\eta^2:\eta^2:\eta^2:q^2-C_8H_8$)(CH₃CN)₂][BAr^f₄]₂ (1), which was recently synthesized and structurally characterized in our group,⁷ as an alternative starting Pd₄ complex for the ligand-substitution reaction. Treatment of 1 with 1 equiv of Li(C₉H₉) in CD₃CN resulted in the selective displacement of the perylene ligand to yield the cyclononatetraenyl–cyclooctatetraene mixed sandwich complex [Pd₄($\mu_4-C_9H_9$)($\mu_4-C_8H_8$)][BAr^f₄] (2) almost quantitatively (eq 1):

Isolation of **2** was attained by passing the reaction mixture through a short neutral alumina column and then recrystallizing from $CH_2Cl_2/$ cyclohexane. ¹H NMR spectra of **2** in CD_2Cl_2 at 298 K showed two sharp singlet signals at 4.55 ppm (9H, C₉H₉) and 3.55 ppm (8H, C₈H₈).

The shape of the signals did not change at low temperature (183 K), indicating the rapid fluxional rotation of the μ_4 -C₉H₉ ligand. ¹³C{¹H} NMR spectra at 298 K showed two sharp singlet signals at 80.9 ppm for the C₉H₉ ligand and 72.5 ppm for the C₈H₈ ligand.

The structure of **2** in the crystalline state was determined by X-ray diffraction analysis (Figure 1). Complex 2 forms a dimer, 2_2 , in the crystalline state. In the monomeric unit 2 (Figure 1A), a nearly equilateral Pd₄ square sheet, in which the average Pd-Pd distance is 2.72 Å, is flanked by the planar C₉H₉ and C₈H₈ ligands. The C₉H₉ ligand coordinates to the Pd₄ square sheet in a μ_4 - η^2 : η^2 : η^3 : η^3 mode, where the C7 atom bridges two Pd atoms with relatively long Pd-C distances (2.57 and 2.62 Å). The C₈H₈ ligand coordinates to the Pd₄ square sheet in a μ_4 - η^2 : η^2 : η^2 : η^2 mode. Square metal sheet sandwich complexes have not been isolated for any other metal elements.¹² The dimeric structure of the sandwich framework $[Pd_4(\mu_4-C_9H_9)(\mu_4 (C_8H_8)_2^{2+}$ is held together by a Pd₄-Pd₄ contact, with the Pd₄ planes forming a dihedral angle of 87° (Figure 1B). The Pd₄-Pd₄ contact $[Pd1-Pd1^* = 2.907(2) \text{ Å}]$ is longer than the typical Pd-Pd bonding interaction.¹³ Indeed, a much shorter Pd_3-Pd_3 contact $[Pd_3-Pd_3 =$ 2.686(1) Å] is found in a dimer of the odd-valence-electron-number trinuclear sandwich complex [Pd₃(µ₃-C₇H₇)₂(CH₃CN)₂]₂[BAr^f₄]₂.⁹ The long Pd_4 -Pd₄ contact in the 2_2 dimer may reflect the even number of valence electrons in the monomer 2. ESI(+)-MS analyses of 2 showed a signal at m/z 647, for which the isotopomer peak separation was m/z 1.0 rather than 0.5, indicating the existence of the monomer 2 or the monomeric fragment of the dimer 2_2 under the electrospray ionization conditions.14

Figure 1. (A) ORTEP drawing of the monomer unit $[Pd_4(\mu_4-C_9H_9)(\mu_4-C_8H_8)][BArf_4]$ (2) (30% probability ellipsoids; the BArf_4 anion and a free solvent molecule have been omitted for clarity). (B) Ball-and-stick drawing of the dimeric structure **2**₂ in the crystalline state. Selected bond lengths (Å) and angles (deg): Pd1-Pd2, 2.724(1); Pd2-Pd3, 2.700(1); Pd3-Pd4, 2.713(1); Pd4-Pd1, 2.728(1); Pd1-Pd1*, 2.907(2) Å; Pd1-Pd2-Pd3, 89.03(3); Pd2-Pd3-Pd4, 91.56(3); Pd3-Pd4-Pd1, 88.68(3); Pd4-Pd1-Pd2, 90.70(3); Pd1*-Pd1-Pd2, 142.60(4); Pd1*-Pd1-Pd4, 126.70(4).

Of interest is the fact that the complex 2 contains no acetonitrile ligands while the formal total valence electron count for the monomer 2 (56e) is four less than that for $1.^{15}$ Indeed, no sign of coordination of CH₃CN or

pyridine to 2 was detected by ¹H NMR analyses, even when excess CH₃CN or pyridine was added to the CD₂Cl₂ solution of 2 at 298 K. However, titration analyses using ¹H and ³¹P NMR (CD₂Cl₂, 298 K) revealed that mono- and bis-PPh3 adducts were generated at equilibrium (Scheme 2). The mono adduct 2-PPh₃ showed a pair of singlet resonances for the C_9H_9 ligand (4.40 ppm) and the C_8H_8 ligand (3.46 ppm). The bis adduct 2-(PPh₃)₂ showed singlet resonances shifted to higher field (4.15 ppm for the C₉H₉ ligand and 3.27 ppm for the C₈H₈ ligand). ³¹P NMR spectra supported the coordination of PPh3 ligands. The amount of 2-PPh3 reached a maximum at $[2]/[PPh_3] \approx 1$, where 2 and 2-(PPh_3)₂ coexisted. When 2 equiv of PPh_3 was added, 2-(PPh_3)₂ was the sole observable species.^{16,17} The titration experiments showed that the first and the second coordination steps are in equilibrium, where each equilibrium lies almost at complete PPh₃ coordination.¹⁸ During the titration experiments, no corresponding 2:1 adduct 22-PPh3 or 2:3 adduct 22-(PPh3)3 was observed, indicating the monomeric form of the phosphine adducts of 2 in solution. The mono-PMe₂Ph adduct **2-PMe₂Ph** showed a sharp doublet signal $({}^{2}J_{PH})$ = 10 Hz) for the methyl protons of the PMe₂Ph ligand at both 293 and 193 K. This signal pattern is also consistent with the monomeric form of 2-PMe2Ph.¹⁹ Thus, to date we have not obtained any observations that strongly support the dimeric structures 2_2 -(**PR**₃)_n (n = 0-4) in solution. In any case, it was proven that the complex 2 is coordinatively unsaturated and capable of accepting phosphine ligands. It is noteworthy that no decomposition of the Pd₄ square sheet sandwich framework was observed, even in the presence of 10 equiv of PPh₃ in CD₂Cl₂ solution.²⁰ Such a robust nature of the square metal sheet sandwich framework of Pd is in sharp contrast to the labile nature of mononuclear Pd sandwich complexes: for example, $Pd(\eta^5-C_5H_5)(\eta^3-allyl)$ decomposes immediately under comparable conditions.21

Scheme 2. Addition of PPh₃ Ligands to 2

As mentioned above, the cyclononatetraenyl ligand has rarely been used with a mononuclear transition-metal center,³ probably because it is known that η^1 -cyclononatetraenyl complexes undergo facile skeletal rearrangement.⁴ We examined the coordination behavior of cyclononatetraenyl to a mononuclear Pd^{II} center. The reaction of [Pd(PPh₃)Br₂]₂ with Li(C₉H₉) in CD₂Cl₂ at ambient temperature immediately afforded a product 3 that presumably was the η^3 cyclononatetraenyl complex. Complex 3 was gradually converted to the dihydroindenyl complex 4 within 12 h at ambient temperature (Scheme 3). Complex 4 was identified by ¹H, ¹³C{¹H}, COSY, and HMQC NMR analyses.

Scheme 3. Mononuclear Pd Complexes Derived from Li(C9H9)

In summary, it has been proven that cyclononatetraenyl, a ninemembered aromatic anion, acts as a stable ligand for a tetranuclear square metal sheet. The present results suggest that the large carbocyclic ligands, which are sometimes incompatible with a mononuclear transition-metal center, can be utilized as the stable face-capping ligand for metal sheet clusters. The successful isolation of the first square metal sheet sandwich complex 2 in this work might expand the structural concept of the molecular sandwich compounds.

Acknowledgment. We thank Prof. H. Kurosawa for helpful discussions and Profs. T. Matsuo and T. Hayashi for ESI-MS analyses. This work was supported by JST and MEXT, Japan.

Supporting Information Available: Experimental details of the preparation and characterization of 2-4 and details of the single-crystal X-ray structural analysis of 2 (CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (1) (a) Kealy, T. J.; Pauson, P. L. Nature 1951, 168, 1039. (b) Miller, S. A.;
- (a) Wilkinson, G.; Rosenblum, M.; Whiting, M. C.; Woodward, R. B. J. Am. Chem. Soc. 1952, 632.
 (a) Wilkinson, G.; Rosenblum, M.; Whiting, M. C.; Woodward, R. B. J. Am. Chem. Soc. 1952, 74, 2125. (b) Fischer, E. O.; Pfab, W. Z. Naturforsch., B 1952, 76, 377.
- (a) Ti(C₅H₅)(C₉H₉): Verkouw, H. T.; Veldman, M. E. E.; Groenenboom, C. J.; van Oven, H. O.; de Liefde Meijer, H. J. J. Organomet. Chem. 1975, 102, 49. (b) Nb(C₅H₅)₂(C₉H₉): Westerhof, A.; de Liefde Meijer, H. J. J. Organomet. Chem. **1978**, 149, 321.
- (4) The parent cyclononatetraene (C₉H₁₀) or η^1 -cyclononatetraenyl complexes of group 13 and 14 metals facilely convert to dihydroindene or dihydroin denyl complexes. See: (a) Radlick, P.; Alford, G. J. Am. Chem. Soc. **1969**, 91, 6529. (b) Boche, G.; Heidenhain, F. J. Organomet. Chem. **1976**, 121, C49. (c) Bonny, A.; Stobart, S. R. Inorg. Chim. Acta **1978**, 31, L437. (d) Bonny, A.; Stobart, S. R. J. Chem. Soc., Dalton Trans. 1979, 786. (e) Gurskii, M. E.; Gridnev, I. D.; Buevich, A. V.; Bubnov, Y. N. Organometallics 1994, 13, 4658.
- (5) Recently, a mononuclear biscyclononatetraenyl complex of an alkalineearth metal, Ba(C₉H₉)₂, was reported, for which a sandwich structure was proposed by theoretical calculations. See: Walter, M. D.; Wolmershäuser, G.; Sitzmann, H. J. Am. Chem. Soc. 2005, 127, 17494.
- (6) Murahashi, T.; Fujimoto, M.; Oka, M.; Hashimoto, Y.; Uemura, T.; Tatsumi, Y.; Nakao, Y.; Ikeda, A.; Sakaki, S.; Kurosawa, H. *Science* **2006**, *313*, 1104.
- Murahashi, T.; Kato, N.; Uemura, T.; Kurosawa, H. Angew. Chem., Int. Ed. 2007, 46, 3509.
- Murahashi, T.; Fujimoto, M.; Kawabata, Y.; Inoue, R.; Ogoshi, S.; (8)Kurosawa, H. Angew. Chem., Int. Ed. 2007, 46, 5440. Murahashi, T.; Hashimoto, Y.; Chiyoda, K.; Fujimoto, M.; Uemura, T.;
- (9)
- (9) Mutanashi, F., Hashinioto, T., Chryota, K., Fujinioto, M., Oenuta, F., Inoue, R., Ogoshi, S.; Kurosawa, H. J. Am. Chem. Soc. 2008, 130, 8586.
 (10) (a) Katz, T. J.; Garratt, P. J. J. Am. Chem. Soc. 1963, 85, 2852. (b) LaLancette, E. A.; Benson, R. E. J. Am. Chem. Soc. 1963, 85, 2853. (c) Katz, T. J.; Garratt, P. J. J. Am. Chem. Soc. 1964, 86, 5194. (d) LaLancette, E. A.; Benson, R. E. J. Am. Chem. Soc. 1965, 87, 1941.
- (11) Murahashi, T.; Uemura, T.; Kurosawa, H. J. Am. Chem. Soc. 2003, 125, 8436. (12) For selected examples of square Pd₄ sheet clusters, see: (a) Mimoun, H.; Charpentier, R.; Mitschler, A.; Fischer, J.; Weiss, R. J. Am. Chem. Soc. **1980**, *102*, 1047. (b) Stromnova, T. A.; Busygina, I. N.; Kochubey, D. I.; Moiseev, I. I. *J. Organomet. Chem.* **1991**, *417*, 193. (c) Tanase, T.; Nomura, T.; Fukushima, T.; Yamamoto, Y.; Kobayashi, K. *Inorg. Chem.* **1993**, *32*, 4578. (d) Evrard, D.; Meilleur, D.; Drouin, M.; Mugnier, Y.; Harvey, P. D. Z. Anorg. Allg. Chem. 2002, 628, 2286.
- (13) Murahashi, T.; Kurosawa, H. Coord. Chem. Rev. 2002, 231, 207
- (14) The isotope pattern of the signal at m/z 647 was consistent with [Pd₄(C₉H₉)- (C_8H_8)]⁺ ($\hat{M_r} = 647.0$). See Figure S1 in the Supporting Information.
- (15) In the crystalline state, the Pd2, Pd3, and Pd4 atoms in 2 possess no capping In the drystaller state, the Pd2, Fd3, and Fd4 adons in 2 possess to capping ligand. While two para carbons, one from an Ar⁴ group in each of the BAr⁴₄ anions, are located near the Pd2 and Pd4 atoms, Pd2…C_{para} (3.11 Å) and Pd4…C_{para} (3.34 Å) are out of the range of Pd–C bond lengths.
- (16) $2-(PPh_3)_2$ was generated as a single isomer. Although the trans/cis stereochemistry of 2-(PPh₃)₂ was not determined in this work, we assumed that the product is the trans isomer since 2-(PMe2Ph)2 is generated as the trans isomer (see ref 17). Only the trans isomer of **2-(PPh_3)**² is shown in Scheme 2. (17) The bis adduct **2-(PMe₂Ph)**² showed a virtual triplet ¹H NMR signal for
- the methyl protons of PMe_2Ph (J = 3 Hz) at both 293 and 193 K. This signal pattern is consistent with the trans geometry of 2-(PMe2Ph)2 but inconsistent with the cis geometry, since the two methyl groups of a PMe_2Ph ligand in $2-(PMe_2Ph)_2$ would be nonequivalent in the cis isomer.
- (18) During the titration experiments (≤ 2 equiv), the concentration of free PPh₃ seemed too low to be determined by ¹H NMR analysis. Thus, K_1 and K_2 are both very large, and K_1/K_2 was estimated to be 33(3) at 298 K.
- The dimer 2_2 -(PMe₂Ph)₂, which is a chiral dication, might show two doublet signals for the diastereotopic methyl groups of the PMe₂Ph ligand. The (19)observed signal pattern would be consistent with the dimer only when rotation about the Pd1-Pd1* bond or dissociation/association of the Pd₄ moiety is much faster than the NMR time scale.
- (20) Addition of PPh₃ (>2 equiv) resulted in a shift of the proton resonances of 2-(PPh₃)₂ to higher field, indicating the formation of tris or higher adducts at equilibrium.
- (21) (a) Werner, H.; Kühn, A.; Tune, D. J.; Krüger, C.; Brauer, D. J.; Sekutowski, J. C.; Tsay, Y.-H. Chem. Ber. 1977, 110, 1763. (b) Henc, B.; Jolly, P. W.; Salz, R.; Stobbe, G.; Wilke, G.; Benn, R.; Mynott, R.; Seevogel, K.; Goddard, R.; Krüger, C. J. Organomet. Chem. 1980, 191, 449.

JA903679F